• 首页
  • 欧洲性爱
  • 亚洲情色图片
  • av在线
  • 亚州色
  • 亚州色情
  • 欧洲性爱你的位置:小泽圆 > 欧洲性爱 > 泰國 人妖 王培杰

    泰國 人妖 王培杰

    发布日期:2024-12-20 19:45    点击次数:111

    泰國 人妖 王培杰

     泰國 人妖

     王培杰         训诲

    所属学科

    原子与分子物理、凝合态物理

    商酌地方

    1、光与物资强互相作用(Light-matter strong interaction)

    2、等离子体增强光谱(Plasmon enhanced spectroscopy, PES)

    3、手性分子拉曼旋光(Raman Optical Activity,ROA)光谱商酌

    4、激光与原子分子互相作用荒芜非线性能源学商酌

    招生地方

    原子与分子物理、凝合态物理

    链接样式

    pjwang@cnu.edu.cn

    王培杰,博士生导师。2003年清华大学物理系获理学博士学位,原子与分子物理专科。2003至2005年在清华大学高档商酌中心作念博士后责任,应用数学地方。2005年至2007年在德国马克想普朗克复杂系统所作念博士后,激光与原子分子互相作用地方。2007年于今在首师大物理系任教。2014-2015年在好意思国乔治亚理工大学物理系作念拜访学者。现在本东谈主主要商酌光与物资强互相作用(等离子体激子耦合),等离子体增强光谱学,手性分子的拉曼旋光(ROA)光谱学,激光与原子分子互相作用荒芜非线性能源学,二维材料(TMDs)、石墨烯新奇物性及光谱本性,其中等离子体激子耦合及等离子体增强光谱学商酌是箝制特点; 通过承担课题,其中主捏过4项国度当然科学基金面上技俩,取得系列商酌效果,共发表SCI论文60余篇,专利7项。

    刻下主捏有国度当然科学基金面上技俩,技俩批准号:21872097,技俩称呼:名义等离子体-激子耦合驱动分子催化反应的SERS光谱商酌,平直用度:65.00万元,技俩起止年月:2019年01月至 2022年 12月。

    《磁性量子表面》;《原子分子光子表面》(全英文讲课)

    拟招收硕士商酌生3东谈主,博士商酌生1~2东谈主

    一、光与物资强互相作用(Light-matter strong coupling) (1) Plexciton(Plasmon exciton coupling)引致的拉比分歧

    图例1 Plexction引致的拉比分歧,(Nanophotonics (IF=7.1, 8(2019), 1835-1845))

    鉴于金属(等离子体)与半导体(激子)的光学互补性荒芜在纳米标准上对能量的可调控性,使得金属和半导体的复合纳米材料比单一的金属或半导体材料具有更好的光能拿获上风。等离子体具有局域的电磁漂泊模式,并具备强的电磁能蚁集和增强光场智力,而激子(Exciton)具有寿命长的激励优点,二者的耦合(Plexciton)极地面普及了金属半导体复合材料及异质结构的光拿获智力。在此想路下,咱们领先探究了等离子体与J聚体激子的互相作用,尤其是当二者的耦配合用增强时,使多礼系产生拉比分歧。咱们商酌了Ag@Au空腹纳米壳/J团聚异构结构的Plexction(Plasmon exciton coupling)强互相作用,得回了拉比分歧为225 meV,并与表面计较高度吻合。相应的效果发表在JCR一区海外期刊Nanophotonics (IF=7.1, 8(2019), 1835-1845),同期咱们又商酌了Ag@Au空腹纳米立方块/J团聚异构结构的Plexction(Plasmon exciton coupling)强互相作用,得回了拉比分歧为179 meV,并与表面计较高度吻合。相应的效果发表在了JCR二区海外期刊The Journal of Physical Chemistry C (IF=4.177, 126(2022), 10566-10573)上。进一步咱们在室温下,通过构建单个Ag@Au空腹纳米立方体(HNCs)与单层WS2构成的复合体系,达成了可调谐单纳米腔等离子体与激子耦合,不雅察到131.3meV的大真空Rabi劈裂,表面计较与执行收尾相吻合。相应的效果发表在了JCR二区海外期刊Applied Physics Letters (IF=3.971, 2(2022), 021104)上。

    图例2 二聚体纳米天线等离子体与单层MoS2激子互相作用, (ACS Applied Materials & Interfaces (IF=10.383, 14(2022), 23756-23764))

    咱们正在开展石墨烯及二维半导体材料(MXS2, X=Mo,W,Ta单层,双层及Moire 超晶格结构)的激子及荧光光谱本性商酌,并构造金属纳米颗粒与二维半导体材料复合体系,进一步商酌等离子体与激子的强互相作用荒芜机制。现在咱们仍是构建一个等离子体纳米线二聚体(NWD)系统,以此行动一种光学天线去点亮隔离热门亚微米标准处的emitter辐射,该体系通过纳米线二聚体的等离子体错误模式将光有用的拿获到近场,然后去激励隔离热门亚微米处的emitter辐射,随后被激励的emitter再次有用的耦合到了偶极错误等离子体模上,被高效的辐射出去,极地面普及了光电探伤器的光反应率。相应的效果发表在了JCR一区海外期刊ACS Applied Materials & Interfaces (IF=10.383, 14(2022), 23756-23764);

    (2) Plexciton驱动的催化反应名义增强拉曼光谱(SERS,Surface Enhanced Raman Scattering)商酌

    图例3 SPR零落产生热电子驱动分子催化反应(Nanoscale, 10 (2018), 18720–18727)

    比年来,名义等离激元光催化行动名义催化科学的一簇新的商酌地方,由于其低耗能和高产出的上风,比年来该范围商酌得回了快速的发展, 名义等离子体催化的中枢想想是:当光映照金属纳米结构时,不错激励纳米结构中的名义等离子体,名义等离子体不错通过局域共振获取电磁能,所收受的能量除了调度成热能,其余的一部分不错革新到分子中以克服在等离子体驱动化学反应中的反应势垒,而等离子体激元驰豫历程中产生的热电子恰巧不错提供化学反应所需要的电子。本东谈主行动该课题的主要通信作家和斟酌者,初次报谈了液相中等离子体驱动的分子催化反应,系列责任在Nature旗下的Scientific Reports上链接发表4篇著述(Sci. Rep., 4, 5407–7(2014); Sci. Rep., 4, 7221−6(2014); Sci. Rep.,5, 11920−10(2015); Sci. Rep., 6, 20458−9(2016)),顺利达成了在水溶液中的等离子体(衰变成热电子)有序驱动的不可逆化学反应。为进一步商酌由光驱动水溶液中的等离子体催化化学提供了新的地方和参考。进一步,咱们还达成了单根纳米线上激励光偏振依赖的等离子体驱动的催化反应(Nanoscale (IF:7.233, 10(2018), 18720–18727)。纳米线与石墨烯酿成的等离子体错误模驱动的催化反应商酌(Nanophotonics, IF:7.4, (2020), DOI: 10.1515/nanoph-2020-0319)。

    鉴于金属与半导体的光学互补性荒芜在纳米标准上对电磁能的可调控性,使得金属和半导体的复合纳米材料比单一的金属和半导体材料具有更好的光催化上风。咱们进一步开展了Plexciton驱动的分子催化反应SERS商酌,为商酌Plexciton耦合机理提供了新的光谱技能。相应的效果行动Rapid communication著述,发表在海外拉曼专刊J. Raman Spectrosc., 2017, 48, DOI: 10.1002/jrs.5199.

    二、名义等离子体调控商酌

    图例4 名义等离子体调控J. Mater. Chem., (2012)22,24006–24011

    名义等离子体纳米结构是现在海外上光学与工程本领商酌的热门范围。本课题遴选激光烧蚀物理身手,勾通化学合成身手 得回千般壳层结构的纳米颗粒及纳米棒,达成对不同波长敏锐的新式名义等离子体材料,况且通过编削纳米颗粒的描摹(顶端描摹,壳核结构等),达成了名义等离子体共振的调谐,该种材料有望被平日应用于名义等离激元超敏锐探伤器以及生物上癌症、肿瘤的名义等离激元热休养,等离子体调换光催化反应。本东谈主行动第一作家和通信作家,系列责任发表在材料和工程一区及等离子体专刊上(J. Mater. Chem., 22,24006–24011(2012); Plasmonics, 7, 509-513 (2012); Crystengcomm, 15, 5114-5118 (2013);Plasmonics,11,1511–1517(2016).; Plasmonics, (2017) DOI 10.1007/s11468–016–0482–0).)

    三、等离子体增强拉曼光谱(SERS、TERS)商酌

    图例5 石墨烯东谈主为劣势可逆操控TERS商酌

    等离子体增强拉曼散射是讹诈金,银等纳米结构的名义等离子体共振使得拉曼峰强相称增强的气候(包括名义增强拉曼散射SERS和针尖增强拉曼散射TERS),这使得拉曼光谱的探伤贤慧度得到了极大的普及,因此它是爽气的以光子作念探针的、及时实地的、高贤慧度地商酌单分子的光谱本领,关于揭示单分子档次上的物理和化学的基本规则,人命科学,材料科学以及单分子器件的商酌具有箝制真谛。咱们恒久专注于SERS与TERS商酌,并成就了一套先进的、具有部分自主学问产权的纳米针尖名义等离子体增强激光耦合系统,并在该系统下以石墨烯的TERS不雅察为方针,初次达成了石墨烯上东谈主为劣势的可逆放胆操作,为石墨烯的东谈主为劣势制造荒芜纳米电子功能器件的应用商酌提供了新身手。本东谈主行动第一作家和通信作家,相应的系列商酌效果发表在包括碳材料和光谱海外专刊上(Carbon, 6 5, 359-364 (2 0 1 3 ),Journal of Raman Spectroscopy, 44,1273-1276 (2013) ; Chemical Physics Letters, 556,146-150 (2013) ;Plasmonics,7,555–561 (2012);RSC Advances , 2,12160-12163 (2012) )。

    四、手性分子拉曼旋光光谱(ROA)及名义增强拉曼旋光光谱(SEROA)商酌

    图例6 手性分子与其镜像表示图

    手性是天地间的多量气候之一,手性问题波及到人命的发祥以及各式人命体的活命和演化。关于一个分子,淌若它的构型不可与其本人的镜像相吻合,则称此分子具有手性。手性分子具有光学活性(Optical Activity, OA,也称光学旋光性),在光的散射方面,主要指的手性分子的归并个振动模关于左、右园偏振的激光具有不同的拉曼散射截面,被称为拉曼光学活性(Raman Optical Activity, ROA),习气上称拉曼旋光。 在手性分子的拉曼旋光光谱商酌方面,本地方在国度当然科学基金资助下,系统地商酌了不同手性分子的立体构型,并瞩目从拉曼峰强起程,得回分子的键极化率及微分键极化率,初次提议了分子内镜像对映结构倡导,并进展了其旋光拉曼产生的机理。咱们进一步讹诈名义增强本领进行名义增强拉曼旋光光谱商酌,这是刻下光散射商酌范围的海外前沿之一。干系的旋光拉曼商酌效果发表在手性商酌海外期刊和拉曼光谱期刊上(Journal of Raman Spectroscopy, 42, 186–191(2011);Chemical Physics 393,140-147 (2012);Chiralty, 25,600-605(2013);Journal of Raman Spectroscopy, 42, 1303–1309(2015)); Vibrational Spectroscopy,(2020)106, 102988-5.

    五、强场华夏子与分子非线性能源学商酌

    图例7 庞加莱截面上涌现的向不变环面(Torus)贴近的周期轨迹(Physical Review E (2018), 98)

    阿秒激光脉冲本领的发展翻开了超快激光物理商酌的大门。氢原子,氦原子及氢分子离子行动当然界最为苟简的原子和分子在这项商酌中饰演了箝制的脚色。咱们拟商酌阿秒、飞秒激光脉冲作用下氢原子,氦原子及锂原子的光电离(Photon Ionization),高次谐波产生(HHG),巩固性本性,氢分子离子的解离,以及解离历程中电子在两个原子核上的散播等课题。由于在强激光作用下,上述体系的非线性效应增强,更突显讹诈经典身手责罚关联原子与分子物理问题的上风。通过求解哈密顿正则畅通方程,得回电子和原子核在不同驱动条目(位置和动量)下的畅通轨迹,并讹诈周期轨迹及粗率表面, 庞加莱截面,巩固和不巩固流型,李雅普诺夫指数等参量揭示其能源学历程,得回了了的物理图像和证据。相应的责任发表在Physical Review E (2018), 98, 042204; Physical Review A (2015)91:023406; Chinese Physics B,(2010)19:113201-6; Chinese Physics B, (2009)18(12):5291; Physical Review Letters, (2008) 100(6): 063002.。

      1. [PDF Download] Ze Li, Qingzhang You, Hui Wang, Lisheng Zhang, Duan Zhang, Shangtong Jia, Yan Fang and Peijie Wang*, Nanowire dimer optical antenna brightens the surface defects of silicon,Nanophotonics, (2023) https://doi.org/10.1515/nanoph-2022-0742. (*corresponding author)

      2. [PDF Download] Qingzhang You, Ze Li, Yang Li, Lilong Qiu, Xinxin Bi, Lisheng Zhang, Duan Zhang, Yan Fang, and Peijie Wang*. Resonance Photoluminescence Enhancement of Monolayer MoS2 via a Plasmonic Nanowire Dimer Optical Antenna ACS Applied Materials & Interfaces 2022 14 (20), 23756-23764. (*corresponding author)

      3. [PDF Download] Yang Li, Xinxin Bi, Qingzhang You, Ze Li, Lisheng Zhang, Yan Fang, and  Peijie Wanga* . Strong coupling with directional scattering features of metal nanoshells with monolayer WS2 heterostructures Appl. Phys. Lett. 121, 021104 (2022). (*corresponding author)

      4. [PDF Download] XinXin Bi, Ze Li, CongCong Zhang, QingZhang You, Yang Li, YiRu Wang, and PeiJie Wang*. Strong Coupling of Ag@Au Hollow Nanocube/J-Aggregate Heterostructures by Absorption Spectra The Journal of Physical Chemistry C 2022 126 (25), 10566-10573. (*corresponding author)

      5. [PDF Download] Ze Li, Yan Pan, Qingzhang You, Lisheng Zhang, Duan Zhang, Yan Fang and Peijie Wang* Graphene-coupled nanowire hybrid plasmonic gap mode–driven catalytic reaction revealed by surface-enhanced Raman scattering DOI:10.1515/nanoph-2020-0319. (*corresponding author)

      6. [PDF Download] Hongru Yang, Peijie Wang*, Guozhen Wu*, The Raman optical activity of pinane as compared with (-)α- and (-)β- pinene: The perspective of intramolecular enantiomerism, Vibrational Spectroscopy, (2020)106, 102988-5.

      7. [PDF Download] Linchun Sun , Ze Li, Jingsuo He and Peijie Wang*,Strong coupling with directional absorption features of Ag@Au hollow nanoshell/J-aggregate Hetero-structures, Nanophotonics, (2019), 8, 1835-1845. (*corresponding author)

      8. [PDF Download] Ze Li,  Yanan Gao, Lisheng Zhang, Yan Fang and Peijie Wang *, "Polarization-dependent surface plasmon-driven catalytic reaction on a single nanowire monitored by SERS", Nanoscale, (2018), 10, 18720–18727. (*corresponding author)

      9. [PDF Download] Ding Wang, Peijie Wang*, and Yueheng Lan*, "Accelerated variational approach for searching cycles", PHYSICAL REVIEW E,  (2018), 98, 042204. (*corresponding author)

      10. [PDF Download] Weidan Ma, Huifang Yang, Zhipeng Li, Sulabha Kulkarni, Duan Zhang, Lisheng Zhang, Yan Fang* and Peijie Wang*, "The Tunable and Well-Controlled Surface Plasmon Resonances of Au Hollow Nanostructures by a Chemical Route", Plasmonics, (2018), 13(1):47–53. (*corresponding author)

      11. [PDF Download] Peijie Wang, Wen Liu, W. Lin and M. Sun, "Plasmon-Exciton Co-driven Surface Catalytic Reaction inElectrochemical G-SERS". J. Raman Spectrosc., (2017), 48, DOI: 10.1002/jrs.5199. (Rapid communication)

      12. [PDF Download] Lisheng Zhang, Feng Zhao, Zhipeng Li, Yan Fang, Peijie Wang*, "Tailoring of Localized Surface Plasmon Resonances of Core-Shell Au@Ag Nanorods by Changing the Thickness of Ag Shell", Plasmonics, (2016), 11:1511-1517. (*corresponding author)

      13. [PDF Download] Lin Cui, Peijie Wang*, Yuanzou Li, Menttao Sun*. "Selectivelasmon-d riven catalysis for para-nitroaniline in aqueous environments", Scientific Reports, (2016), 6:20458. (*corresponding author)

      14. [PDF Download] Juanzi Shi, HongXiashen, Lisheng Zhang, Peijie Wang*, YanFang, Guozhen Wu*, "Intramolecular enantiomerism as revealed from Raman optical activity spectrum", Journal of Raman Spectroscopy, (2015), 42:1303-1309. (*corresponding author)

      15. [PDF Download] M. J. Norman,  C. Chandre,  T. Uzer,  and PJ. Wang , "Nonlinear dynamics of ionization stabilization of atoms in intense laser fields", Physical Review A, (2015), 91:023406.

      16. [PDF Download] Lin Cui, Peijie Wang*, Yurui Fang, Yuanzuo Li, Mengtao Sun, "A plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment",  Scientific Reports, (2015), 5:11920. (*corresponding author)

      17. [PDF Download] Xiaojuan Chen, Rui Wen, Lisheng Zhang, Abhishek Lahirib, Peijie Wang*,  Yan Fang, "Photoreduction of silver salts using Au nanoparticles to form a core-shell type nanostructure: Insight into the reaction mechanism", Plasmonics, (2014), 9(4):954-949. (*corresponding author)

      18. [PDF Download] Lin Cui, Peijie Wang*, Xiaowei Chen, Yurui Fang, Zhenglong Zhang, Mengtao Sun*, "Plasmon-driven dimerization via S-S chemical bond in an aqueous environment",  Scientific Reports, (2014), 4:7221. (*corresponding author)

      19. [PDF Download] Xin Zhang, Peijie Wang*, Zhenglong Zhang, Yurui Fang, Mengtao Sun*, "Plasmon-driven sequential chemical reactions in an aqueous environment", Scientific Reports,  (2014), 4:5407. (*corresponding author)

      20. [PDF Download] Xin Zhang, Peijie Wang*, Shaoxiang Sheng, Lisheng Zhang a, Yan Fang, "Direct visual evidence for chemical mechanism of SERRS of the S-complex of pyrimidine molecule adsorbed on silver nanoparticlevia charge transfer", Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, (2014), 121:430-435. ( *corresponding author) 

      21. [PDF Download] Peijie Wang, Zhaojun Liu. "Darling-Dennison resonance of thiourea adsorbed on the silver electrode revealed by surface enhanced Raman spectroscopy", Journal of Raman Spectroscopy, (2013), 44:1273-1276.

      22. [PDF Download] Wang, Peijie, Fang, Yan, Wu, Guozhen, "The Asymmetry of (-)-Pineneas Revealed from its Raman Optical Activity Spectrum", Chirality, (2013), 25:600-605.

      23. [PDF Download] Lilin Li, Baoshan An, Peijie Wang*, Yan Fang*, "Doublet of D and 2D Bands in Graphene Deposited with Ag Nanoparticles by Surface Enhanced Raman Spectroscopy", Carbon, (2013)65:359-364. (*corresponding author)

      24. [PDF Download] Peijie Wang, Duan Zhang, Lisheng Zhang, Yan Fang*, "The SERS study of graphene deposited by gold nanoparticles with 785 nm excitation", Chemical Physics Letters, (2013), 556:146-150.

      25. [PDF Download] Yanrong Chen, Haihua Wu,Zhipeng Li, Peijie Wang*, Longkun Yang,Yan Fang. "The Study of Surface Plasmon in Au/Ag Core/Shell Compound Nanoparticles", Plasmonics, (2012), 7:509-513. (*corresponding author)

      26. [PDF Download] Peijie Wang, Duan Zhang, Lilin Li, Zhipeng Li, Lisheng Zhang, Yan Fang*, "Reversible Defect in Graphene Investigated by Tip-Enhanced Raman Spectroscopy", Plasmonics, (2012), 7:555-561.

      27. [PDF Download] Peijie Wang, Mingyue Liu, Geli Gao, Shunping Zhang, Honglong Shi, Zhipeng Li, Lisheng Zhang, Yan Fang*, "From gold nanorods to nanodumbbells: a different way to tailor surface plasmon resonances by a chemical route", Journal of Materials Chemistry, (2012), 22:24006-24011.

      28. [PDF Download] Peijie Wang, Yan Fang, Guozhen Wu*. "Raman excitation of (+)-(R)- methyloxirane and its origin of optical activity via bond polarizabilities", Journal of Raman Spectroscopy, (2011), 42:186-191.

      29. [PDF Download] Peijie Wang and  He Feng, "Multiphoton ionization of the hydrogen atom exposedcircularly or linearly polarized laser", Chinese Physics B, (2009), 18(12):5291.

      30. [PDF Download] Emmanouilidou, Agapi*, Peijie Wang, Rost, Jan M., "Initial state dependence in multielectron threshold ionization of atoms", Physical Review Letters, (2008), 100(6):063002.

      31. [PDF Download] Peijie Wang*, Yan Fang, "The surface enhanced Raman spectroscopic study of the adsorptionof C70 on the gold nanoparticles", The Journalof Chemical Physics, (2008), 129(13):134702.

      32. [PDF Download] Wang Pei-Jie*, Fang Yan, "Multiphoton resonant ionization ofhydrogen atom exposed to two-colour laser pulses", Chinese Physics B, (2008), 17:3668-3671.

      33. [PDF Download] Peijie Wang  and Guozhen Wu, "Ultraviolet laser excited surface enhanced Raman scattering of thiocyanate ion on the Au electrode", Chemical Physics Letters, (2004), 385:96-100.

      34. [PDF Download] Peijie Wang  and Guozhen Wu, "Quantization of non-integrable Hamiltonian by periodic orbits: a case study of chaotic DCN vibration", Chemical Physics Letters, (2003), 375: 279-285.

    三上悠亚在线

      35. [PDF Download] Peijie Wang  and Guozhen Wu, "Formal quantum numbers as retrieved by the diabatic correlation and their classical interpretation for the highly excited vibrational eigenstates", Chemical Physics Letters, (2003), 371:238-245.

      36. [PDF Download] Peijie Wang  and Guozhen Wu, "Quantization of the nonintegrable Hamiltonian by the Lyapunov analysis", Phys. Rev. A泰國 人妖, (2002), 66: 207-212.



    Powered by 小泽圆 @2013-2022 RSS地图 HTML地图

    Copyright © 2013-2024